Extending Data-Driven Koopman Analysis to Actuated Systems
نویسندگان
چکیده
منابع مشابه
A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
The Koopman operator is a linear but infinite-dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data-driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Ko...
متن کاملSpatiotemporal Feature Extraction with Data-Driven Koopman Operators
We present a framework for feature extraction and mode decomposition of spatiotemporal data generated by ergodic dynamical systems. Unlike feature extraction techniques based on kernel operators, our approach is to construct feature maps using eigenfunctions of the Koopman group of unitary operators governing the dynamical evolution of observables and probability measures. We compute the eigenv...
متن کاملExtending Event-Driven Architecture for Proactive Systems
Proactive Event-Driven Computing is a new paradigm, in which a decision is not made due to explicit users' requests nor is it made as a response to past events. Rather, the decision is autonomously triggered by forecasting future states. Proactive event-driven computing requires a departure from current event-driven architectures to ones capable of handling uncertainty and future events, and re...
متن کاملExtending knowledge-driven activity models through data-driven learning techniques
Knowledge-driven activity recognition is an emerging and promising research area which has already shown very interesting features and advantages. However, there are also some drawbacks, such as the usage of generic and static activity models. This paper presents an approach to using data-driven techniques to evolve knowledge-driven activity models with a user’s behavioral data. The approach in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2016
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2016.10.248